Question 2:

A plane with an initial speed of 95 m/s touches down on a runway. For the first second the plane rolls without decelerating. For the next 5 seconds reverse thrust is applied, decelerating the plane at a rate of 4 m/s 2 . Finally, the brakes are applied with reverse thrust increasing the rate of deceleration to 8 m/s 2 . How long does it take for the plane to come to a complete stop? How far does the plane travel before coming to a complete stop?

$$I \times (t) = \int V(t) = \int 95$$

$$X(t) = 95t + 2.5 \times 0.00$$

$$X(t) = 95m$$

$$X(t) = \int V(t) = \int -4t + 99$$

$$X(t) = -2t^{2} + 99t + C = V \text{ when } t = 1$$

$$X(t) = -2$$

$$C = -2$$

$$X(t) = -2t^2 + 99t - 2$$
 $X(6) = 520 m$

$$X(t) = -4t^{2} + 123t + C \times = 520$$

$$C = -74$$

$$X(t) = -4t^2 + 123t - 74$$
 $X(15.375) = 871.6m$
distance to stop