Question 3:

A flat belt is being used to transfer power from a motor to an alternator as shown in the diagram below. The coefficient of friction between the belt material and the pulley is .5. If we require a power of 100 Watts (Nm/s) while the input is rotating at a rate of 1000 rpm, what is the required resting tension in the belt? (Assume contact angles of approximately 180°)

input puller

$$T_{2max} = T_{rest} e$$
 $T_{2max} = T_{rest} e$
 $T_{2max} = T_{rest} e$
 $T_{2max} = 4.81 T_{rest}$
 $4.55N = 4.81 T_{rest} - T_{rest}$

input puller

output pulley

$$P = M \omega$$
 $100 \, \text{Nm}_s = (M)(149.6 \, \text{rad/s})$
 $M = .668 \, \text{Nm}$
 $M = (T_{2max} - T_{rest})(v_2)$
 $0.07m$

Trest = 2.51 N
same in both locations